Compounds in garlic work synergistically to produce various effects, but, because of garlic's chemical complexity, processing methods yield preparations with differing efficacy and safety. Although thiosulfinates such as allicin have been long misunderstood to be active compounds due to their characteristic odor, it is not necessary for garlic preparations to contain such odorous compounds to be effective, and they decompose and disappear during any processing. Garlic exhibits hypolipidemic, antiplatelet, and procirculatory effects. It prevents cold and flu symptoms through immune enhancement and demonstrates anticancer and chemopreventive activities. In addition, aged garlic extract possesses hepatoprotective, neuroprotective, antioxidative activities, whereas other preparations may stimulate oxidation.
Additional effects may be caused by S-allylcysteine, S-allyl mercaptocysteine), saponins, N-fructosyl arginine, and other substances formed during a long-term extraction process. Although not all of active ingredients of garlic are known, and allicin-like transient components are not directly active, ample research suggests that an allicin-free garlic preparation that is standardized with a bioavailable component such as S-allylcysteine, is active and various effects of garlic may be attributed to it. Furthermore, various chemical constituents in garlic products, including nonsulfur compounds such as saponins, may contribute to the essential biological activities of garlic. Further studies are needed to confirm their bioavailability and associated activities.