Background— Experimental data suggest that bone marrow–derived cells may contribute to the healing of myocardial infarction (MI). For this reason, we analyzed 10 patients who were treated by intracoronary transplantation of autologous, mononuclear bone marrow cells (BMCs) in addition to standard therapy after MI.
Methods and Results— After standard therapy for acute MI, 10 patients were transplanted with autologous mononuclear BMCs via a balloon catheter placed into the infarct-related artery during balloon dilatation (percutaneous transluminal coronary angioplasty). Another 10 patients with acute MI were treated by standard therapy alone. After 3 months of follow-up, the infarct region (determined by left ventriculography) had decreased significantly within the cell therapy group (from 30±13 to 12±7%, P=0.005) and was also significantly smaller compared with the standard therapy group (P=0.04). Likewise, infarction wall movement velocity increased significantly only in the cell therapy group (from 2.0±1.1 to 4.0±2.6 cm/s, P=0.028). Further cardiac examinations (dobutamine stress echocardiography, radionuclide ventriculography, and catheterization of the right heart) were performed for the cell therapy group and showed significant improvement in stroke volume index, left ventricular end-systolic volume and contractility (ratio of systolic pressure and end-systolic volume), and myocardial perfusion of the infarct region.
Conclusions— These results demonstrate for the first time that selective intracoronary transplantation of autologous, mononuclear BMCs is safe and seems to be effective under clinical conditions. The marked therapeutic effect may be attributed to BMC-associated myocardial regeneration and neovascularization.